
G. Sridhar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.86-90

 www.ijera.com 86 | P a g e

An Efficient High Speed Design of 16-Bit Sparse-Tree RSFQ

Adder

G. Sridhar
1
 A. Shankar

2

PG Student, M.tech(ECE), Dept., GCET, Cheryala, R.R Disc,Telangana, India.

Associate Professor, ECE Dept., GCET, Cheryala, R.R Disc,Telangana, India.

Abstract—

In this paper, we propse 16-bit sparse tree RSFQ adder (Rapid single flux quantam), kogge-stone adder, carry

lookahead adder. In general N-bit adders like Ripple carry adder s(slow adders compare to other adders), and

carry lookahead adders(area consuming adders) are used in earlier days. But now the most of industries are

using parallel prefix adders because of their advantages compare to kogge-stone adder, carry lookahead adder,

Our prefix sparse tree adders are faster and area efficient. Parallel prefix adder is a technique for increasing the

speed in DSP processor while performing addition. We simulate and synthesis different types of 16-bit sparse

tree RSFQ adders using Xilinx ISE10.1i tool, By using these synthesis results, We noted the performance

parameters like number of LUT’s and delay. We compare these three adders interms of LUT’s represents area)

and delay values.

Keywords—digital arithmetic, RSFQ adder, kogge-stone adder ,carry operator, prefix adder.

I. INTRODUCTION

Arithmetic circuits are the ones which perform

arithmetic operations like addition, subtraction,

multiplication, division, parity calculation. Most of

the time, designing these circuits are the same as

designing muxers, encoders and decoders. In

electronics, an adder or summer is a digital circuits[7]

that performs addition of numbers. In many

computers and other kind of processors, adders are

other parts of the processor, many computers and

other kinds of processors, where they are used to

calculate addresses, table and similar. The binary

adder [7, 10] is the one type of element in most

digital circuit designs including digital signal

processors(DSP) and microprocessor data path units.

Therefore fast and accurate operation of digital

system depends on the performance of adders. Hence

improving the performance of adder is the main area

of research in VLSI system design[10] .

In RSFQ logic, most adder designs demonstrated

to date are bit-serial or digit-serial architectures

which operate on a single bit or a small group of bits

sequentially at a very high processing rate . Such

designs allow for simple clocking and compact

structures. However, the latency of serial adders

Scales O(n), where n is the number of bits per

operand, which leads to long latencies for 32-/64-bit

operations in general purpose processors. In the past,

parallel architectures in RSFQ have been limited to

small data widths or relatively long latency ripple

carry adders . One study evaluated 32-/64-bit parallel

Kogge-Stone RSFQ adders using co-flow clocking .

This paper is organized as follows; Section II

explains the 16-bit Sparse-tree RSFQ

adder and detail structure of CSA and

RSFQ adder respectively. A section III deals with

proposed architecture of Sparse-tree RSFQ with CLA

and kogge-stone.A section IV explain about

Comparisons of area and delay.

II. 16-BIT SPARSE TREE RSFQ ADDER
A. Sparse-tree RSFQ Adder

High-performance parallel adders typically use

prefix trees which generate carries in log2(n) time,

where n is the number of bits of the datapath. The

Kogge-Stone adder (KSA) [1] is considered to be the

fastest among parallel-prefix adders. Further

enhancements to the KSA prefix structure such as the

sparse-tree configuration have been proposed and

used in high-performance Intel processors [2].

 In our 16-bit RSFQ adder design, we chose

the sparse-tree structure to reduce the number of

wiring junctions needed for its implementation

without any significant effect on its processing rate.

As a side effect, this will also lead to a more energy-

efficient design by reducing the total bias current and

power consumption. Fig. 1 illustrates the structural

diagram of our sparse-tree adder. It consists of the

following three stages: Initialization, Prefix-Tree and

Summation.

The Initialization stage receives two 16-bit data

operands A and B to create bitwise Generate (G) and

RESEARCH ARTICLE OPEN ACCESS

G. Sridhar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.86-90

 www.ijera.com 87 | P a g e

 Fig1: 16-bit Sparse-tree RSFQ Adder

Propagate (P) signals which will be merged in a

logarithmic manner in the Prefix-Tree stage. The

Initialization stage consists of GPR_INIT logic

blocks, one for each bit. The GPR_INIT creates the

bitwise prefix functions described as Gi = Ai • Bi and

Pi = Ai ⊕ Bi where i is the bit index column ranging

from 15 down to 0 in the 16-bit adder. These

functions are easily realized through clocked AND

and XOR gates in a co-flow clocking arrangement.

The clock is the Rdy signal provided to all bits

Additionally, it is necessary to create the trailing reset

signal R which will be used to reset the asynchronous

elements in the Prefix-Tree. Signal R is a copy of the

Rdy signal for each bit with wJ-based delay lines to

ensure data signals are processed before reset follows

in the asynchronously Prefix-Tree.

The Prefix-Tree stage consists of Carry-Merge

(CM) blocks to merge the prefix signals and provide

a group carry to each 4-bit summation block. In

contrast, the Kogge-Stone prefix tree provides a carry

to every individual bit of the adder. DFF (D flip-

flop) buffers appropriately delay prefix and bitwise P

signals until they are ready to be merged or processed

at the Summation stage, respectively. The first three

levels of the Prefix-Tree also perform the ripple-carry

addition within each 4-bit group before data arrive at

the Summation stage. The Prefix-Tree stage is built

with CM blocks to merge the prefix signals as shown

in Fig.1. Merging of the prefix signals is described in

[1]. It is implemented with CFFs (re-settable Muller

C-flip-flop gates based on the Muller C-element [4],

[5]) and confluence buffers used as asynchronous OR

gates. The CFFs provide the following functions.

First, they behave as asynchronous AND gates.

Second, they are used as key re-synchronization

elements for wave-pipelining allowing data waves to

wait until all their appropriate signals arrive. Due to

the encoding of the prefix signals, confluence buffers

can be safely used as asynchronous OR gates without

any danger of violating the time separation

requirement of their input pulses.

 The Summation stage computes the final sum with

4-bit carry-skip adders [3]. The lower-half of the

adder (bits 7:0) can start the Summation stage early

because all appropriate signals are ready. The upper-

half of the adder (bits 15:8) must wait until carries for

this upper half are calculated by the very last level of

the Prefix-Tree stage. The Summation stage has a 4-

bit carry-skip adder block [3] for each 4-bit group. In

our carry-skip adders, the generation of a carry-in to

the two most significant bits of the group is done in

parallel with the calculation of the two least

significant s

III. PROPOSED SPARSE-TREE RSFQ

ADDER
B. Parallel prefix adders

The Parallel Prefix adder is done in three steps,

which is shown in below fig.2 in step1 we can

calculate the generate and propagate signals. In step2

generate the carry signals. In step3 generate the sum

for addition. The fundamental generate and

propagate signals are used to generate the carry input

for each adder.

Fig.2 Addition Procedure using Parallel prefix tree

Structure

The parallel prefix adders [7] are more flexible

and are used to speed up the binary additions. Parallel

prefix adders are obtained from Carry Look Ahead

(CLA) structure. We use tree structure form to

increase the speed [8] of arithmetic operation.

Parallel prefix adders are fastest adders and these are

used for high performance arithmetic circuits in

industries. The construction of parallel prefix adder

[9] involves three stages

1. Pre- processing stage

2. Carry generation network

3. Post processing

Pre-possessing stage

In this stage we compute, generate and propagate

signals to each pair of inputs A and B. These signals

are given by the logic equations 1&2:

G. Sridhar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.86-90

 www.ijera.com 88 | P a g e

Pi=Ai xor Bi............................... (1)

Gi=Ai and Bi............................. (2)

Carry generation network

In this stage we compute carries corresponding

to each bit. Execution of these operations is carried

out in parallel [9]. After the computation of carries in

parallel they are segmented into smaller pieces. It

uses carry propagate and generate as intermediate

signals which are given by the logic equations 3&4:

CPi:j=Pi:k+1 and Pk:j........................(3)

CGi:j=Gi:k+1 or (Pi:k+1 and Gk:j).......(4)

 Fig 3: Carry operator

Post processing

 This is the final step to compute the summation of

input bits. It is common for all adders and the sum

bits are computed by logic equation 4&5:

Ci-1=(Pi and Cin) or Gi.................. (4)

 Si=Pi xor Ci-1............................... (5)

C. Carry Look Ahead Adder

A Carry Look Ahead adder(CLA) is a type of

adder used in digital circuits. A carry-look ahead

adder improves speed by reducing the amount of time

required to determine carry bits. It can be contrasted

with the simpler, but usually slower, ripple carry

adder[11] for which the carry bit is calculated

alongside the sum bit, and each bit must wait until the

previous carry has been calculated to begin

calculating its own result and carry bits. The carry-

look ahead adder calculates one or more carry bits

before the sum, which reduces the wait time to

calculate the result of the larger value bits. To reduce

the computation time, engineers devised faster ways

to add two binary numbers by using carry-look ahead

adders. They work by creating two signals (P and G)

for each bit position, based on if a carry is propagated

through from a less significant bit position (at least

one input is a '1'), a carry is generated in that bit

position (both inputs are '1'), or if a carry is killed in

that bit position (both inputs are '0'). In most cases, P

is simply the sum output of a half-adder and G is the

carry output of the same adder. After P and G are

generated the carries for every bit position are

created. Some advanced carry-look ahead

architectures the Kogge-Stone adder. The modified

16-bit sparse-tree RSFQ adder by using CLA figure

shown below.

Figure4: Modified 16-bit RSFQ adder by using Carry

Look Ahead Adder

 Kogge-Stone (KS) adder

 Kogge-Stone adder is a parallel prefix form

carry look ahead adder. The Kogge-Stone adder [6]

was developed by peter M. Kogge and Harold S.

Stone which they published in 1973. Kogge-Stone

prefix adder is a fast adder design. KS adder has best

performance in VLSI implementations. Kogge-Stone

adder has large area with minimum fan-out. The

Kogge- Stone adder is widely known as a parallel

prefix adder that performs fast logical addition.

Kogge-Stone adder[9] is used for wide adders

because of it shows the less delay among other

architectures. In fig4 each vertical stage produce

Propagate and Generate bits. Generate bits are

produced in the last stage and these bits are XORed

with the initial propagate after the input to produce

the sum bits. The 4-bit Kogge- Stone adder figure

shown below.

 Figure5: 4-bit Kogge-Stone Adder

G. Sridhar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.86-90

 www.ijera.com 89 | P a g e

In this proposed method modification is

done by replacing the parameter 4-bit carry skip

adder with 4-bit carry look ahead adder, 4-bit Kogge-

Stone adders. By using this logic we can reduce delay

and area. The figure4&6 shows structure of modified

sparse-tree RSFQ adder using CLA and Kogge-stone

adder logic.

Figure6: Modified 16-bit RSFQ adder by using KSA

IV. SIMULATION RESULTS AND

COMPARISIONS
 Various adders were designed using Verilog

language in Xilinx ISE Navigator 10.1 and all the

simulations are performed using Modelsim 6.5e

simulator. The performance of proposed adders are

analyzed and compared. In this proposed architecture

, the implementation code for modified 16-bit sparse-

tree RSFQ adder by using Kogge-Stone, carry look

Ahead adders were developed and corresponding

values of delay and area were observed. Table1

shows the comparision of adders. The simulated

outputs of 16-bit proposed adders are shown in

Figure 7,8&9.

Table1: Comparision of Adders

Fig7: Simulated output of 16-bit Sparse-tree

RSFQ with CSA

Fig8: Simulated output of 16-bit Sparse-tree

RSFQ with

CLA

Fig9: Simulated output of 16-bit Sparse-tree

RSFQ with KSA

Topology Delay No of LUT's

RSFQ WITH CSA 9.352ns 72

RSFQ WITH CLA 5.161ns 17

RSFQ WITH KSA 4.04ns 20

G. Sridhar Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 9(Version 3), September 2014, pp.86-90

 www.ijera.com 90 | P a g e

V. CONCLUSION
The proposed adders are faster because of less

delay and area efficient compared to other basic

adders. Among these three prefix adders Sparse-tree

RSFQ with Kogge-stone adder has better

performance compared to remaining adders. The

performance comparisons between these adders are

measured in terms of area and delay. It would be

interesting to investigate the design of the 32 and 64

bit adders. These adders are popularly used in VLSI

implementations.

VI. ACKNOWLEDGEMENT
S. Saddam Hussain would like to thank Mr. S.

Mahaboob basha, Assistant professor ECE

Department who had been guiding throughout the

project and supporting me in giving technical ideas

about the paper and motivating me to complete the

work efficiently and successfully.

 REFERENCES

 [1] P.M Kogge and H. S. Stone, ―A parallel

algorithm for the efficient solution of a

general class of recurrence equations,‖

IEEE Trans. Comput, vol.C-22, no. 8 , pp.

786-793, Aug .1973.

[2] S. Mathew, M. Anders, R. K. Krishnamurthy,

and S. Borkar, ―A 4-GHz 130-nm address

generation unit with 32-bit sparse-tree adder

core,‖ IEEE J. Solid-State Circuits, vol. 38,

no. 5, pp. 689–695, May 2003.

[3] A. G. M. Strollo and E. Napoli, ―A fast and

area efficient complimentary pass-transistor

logic carry-skip adder,‖ in Proc. 21st Int.

Conf. Microelectron., Sep. 1997, vol. 2, pp.

701–704.

[4] O. A. Mukhanov, S. V. Rylov, V. K.

Semonov, and S. V. Vyshenskii, ―RSFQ logic

arithmetic,‖ IEEE Trans. Magn., vol. 25, no.

2, pp. 857–860, Mar. 1989.

[5] Z. J. Deng, N. Yoshikawa, J. A. Tierno, S. R.

Whiteley, and T. van Duzer, ―Asynchronous

circuits and systems in superconducting

RSFQ digital technology,‖ in Proc. 4th Int.

Symp. Adv. Res. Asynchronous Circuits

Syst., Apr. 1998, pp. 274–285.

[6] Kogge P, Stone H, ―A parallel algorithm for

the efficient solution of a general class

Recurrence relations,‖ IEEE Trans.

Computers, Vol.C-22, pp 786-793,Aug. 1973.

[7] Reto Zimmermann. Binary Adder

Architectures for Cell-Based VLSI an their

Synthesis. Hartung-Gorre, 1998.

[8] Y. Choi, ―Parallel Prefix Adder Design,‖

Proc. 17th IEEE Symposium on Computer

Arithmetic, pp 90-98, 27th June 2005.

[9] D. Harris, ―A taxonomy of parallel prefix

networks,‖ in Signals, Systems and

Computers,2003. Conference Record of

Thirty Seventh Asilomar Conference on, vol.

2, the Nov. 2003,pp.2217.

[10] N. H. E. Weste and D. Harris, CMOS VLSI

Design, 4
th

 edition, Pearson Addison-Wesley,

2011.

[11] D. Gizopoulos, M. Psarakis, A. Paschalis, and

Y.Zorian, ―Easily Testable Cellular Carry

Look ahead Adders,‖ Journal of Electronic

Testing: Theory and Applications 19, 285-

298, 2003.

